Monopoly GO!
Economy PM Simulation Test

James Boyle

Contents

1. Model Explanation
a. Setup, execution, assumptions
2. Model Analysis
a. Distribution of card rarities
b. Flaws in game design and monetization strategy
3. Recommendations
a. Retune album design or parameters for better balance, player satisfaction, retention, and monetization

Model Explanation

Model Explanation - Setup

Setup Overview

e Used Python to generate 10,000 player sample based on parameters given
o Chose python because | wanted to track specific card duplicates over the event duration
o Reference file: james_boyle_monopoly_go_simulation.py
e Createda.csvthatluploaded as atable to BigQuery
o Output from python (file available upon request): james_boyle_monopoly_db.csv
e Allowed me to run SQL for analysis purposes, which was useful for making tables and graphs
o Reference link

https://docs.google.com/spreadsheets/d/1F0kpM-8jTDZhGn1GqyvDDNlusW2PxpZJ2wcJRJ6Wuz0/edit?usp=sharing

Model Explanation - Execution

e Importcsv library to create .csv for SQL
database, and numpy library for random
choice function

e Definedictionaries for the main parameters
of the simulation that will be used to

generate sample card packs for each player
o Will be useful levers for retuning the model

import csv
import numpy as np

duration = 50

daily_pack_acquisition_rates = {
"common_pack": 4,
"uncommon_pack": 2,
"rare_pack": 1,

}

cards_per_pack = {
"common_pack': 2,
"uncommon_pack": 3,
"rare_pack": 4,

pack_odds = ﬂ
"common_pack": [0.70, 0.25, 0.05],
"uncommon_pack": [@.55, 0.35, 0.10],
"rare_pack": [0.30, 0.40, 0.30]4

card_rarities = {
""common_cards": 100,
"uncommon_cards": 60,
"rare_cards": 25,

cards = list(range(sum(card_rarities.values())))

Model Explanation - Execution |[SESSGR e

return 0
elif 100 <= card_number < 160:
return 1
. . . . 1517 d b 185:
e Uses previously defined dictionaries to i wl
create list of cards and their rarities e VatueError()
e Thencreates functions to get the rarity of , ‘
def card_range(rarity):
the card based on the card’s number if rarity == o:
return cards[:100]
o 0to 99 =common elif rarity == 1:
o 100 to 159 = uncommon return cards[100:160]
elif rarity == 2:
o 160to 184 =rare return cards[160:185]

else:
raise ValueError()

choose_with_replacement = True

Model Explanation - Execution

def generate_pack(pack_type):

packs_to_choose_from = np.random.choice(

[e, 1, 2],
e Generate_pack function creates packs with o e nse b yesTl
replace=choose_witnh_replacement,
correct #cards and randomly chooses a card p=pack_odds [pack_type]

)

based on the probability of getting a i [

np.random.choice(card_range(card_type))

Common/u ncommon/ra re for card_type in packs_to_choose_from
e One_day function combines the arrays from :
opening eaCh Card paCk into one array for - S?fggii:::a set of cards for one player over the course of one day"""
that day retu;‘zpr{z;concatenate(
e Card_pack_type uses the fact that we know generate_pack(pack_type)
. . for pack_type, daily_pack_acquisition_rate in daily_pack_acquisition_rates.items()
the index of the card in the pack so we can for _ in range(daily_pack_acquisition_rate)
determine the rarity of the pack that it)
came from def card_pack_type(card_id):

if @ <= card_id < 8:

return "common_pack"
elif card_id < 14:

return "uncommon_pack"
elif card_id < 18:

return "rare_pack"
else:

raise ValueError()

Model Explanation - Execution

def one_player():
"""Generate of full day's set of cards for one play

e One_player function forms array of all the return np.vstack(
player’s cards over the event duration tuplg({ji—g:z'm e doration)
e Thenlgenerate 10,000 samples with the ,
player_experiences function np. randon. seed(1234)

e Andwritethatdatatoa.csv n_players = 10_000

player_experiences = [one_player() for player in range(n_players)]

with open("james_boyle_monopoly_db.csv", "w", newline="") as f:
field_names = ["player_id", "day", "card_pack_type", "card_id", "card_rarity"]
f.write(",".join(field_names) + "\n")
writer = csv.writer(f)
for player_index, player_experience in enumerate(player_experiences):
player_id = f'player_{player_index+1:06}"
for day_index, card_set in enumerate(player_experience):
day = day_index + 1
for card_index, card_id in enumerate(card_set):
writer.writerow([player_id, day, card_pack_type(card_index), card_id, rarity(card_id)])

Model Explanation - Execution

Google Cloud

e |uploaded the .csvto Google
Cloud Console

. Explorer +ADD I
e Thencreated adatabasein
GOOg|e Bnguery ‘ Q Type to search > ,
Viewing resources.
SHOW STARRED ONLY
w third-technique-268017 ¥ ¢

v @ saved queries (0)
w 2% Project queries
22 James_boyle_monopoly._...
-9 External connections
v [E] monopoly_go_retuned
B retuned_data

w [Z] monopoly_go_test1

%o X X

B sample_data

‘ e* My First Project ¥ ‘

@ James_boyle_monopoly_queries

Search (/) for resources, docs,

Set up billing to upgrade to the full BigQuery experience. Learn more (2

@ v X @ James_b..ies v X [sampledata ¥ X @ *Untitled query + X @ *Untitled quer

[SAVE QUERY ~ +8 SHARE ~

© RUN

select

set_finishing_day

,count(distinct player_id) as num_players

from

(select

player_id, min(case when cumulative_uniques=185 then day else null end) as set_finis

from

(select

player_id, day,

from

(SELECT player_id, day, card_id

,COUNT(*) OVER (PARTITION BY player_id, card_id ORDER BY day ROWS BETWEEN UNBOUNDED
FROM "third-technique-268617.monopoly_go_test1.sample_data

order by player_id, day

)x

order by player_id, day

count(case when cumulative_card_count=1 then card_id else null end)

Model Explanation - Assumptions

e Explicitly not modeling real-world behavior:
o Entire playerbase is getting all the packs per day
o Not modeling typical player earn rates based on their sessions per day or engagement with faucet features
m This would wildly affect card acquisition variance, and therefore, tuning

Model Analysis

Model Analysis - Simulation Outcomes

e Firstlooked into how many of the event
cards players were getting by the end

e Very tight distribution of cards, but only
23% completing the entire set

e Opportunity: players who are missing a few
cards could be monetized to complete the
collection

% of Players with Unique Cards Obtained by End of Event

40%

35%
30%

26%

23%

20%

% of playerbase

10% 11%

oy
0% 0% 0% 1% 7

0%
177 178 179 180 181 182 183 184 185

unique_cards

Model Analysis - Simulation Outcomes

e Sincethere are 900 cards earned by each player
over the event, and most are getting close to the
complete set of 185, there are a lot of duplicates

e Aroundday 7, players are already getting as many
duplicates and unique cards

e Aroundday 25, they are getting only 2 unique cards
on average

) Represents a problem for retention as players likely
to disengage with event if mostly earning duplicates

e Difficult to solve with current event structure

Average Unique and Duplicate Cards per Day
== avg_unique_cards == avg_duplicate_cards

18

16
14
12

o N A O @

day

50

Model Analysis - Simulation Outcomes

e Looked into if players were completing sets
of different rarities

e Disturbingly, the rarer the set, the more
likely players are to complete it

e Lowset completion rates across the board
led to very low completion of the entire set
of 185 cards

Average Set

% Finishing | % Unfinished |Completion
Set Type Set Set Day
Common Set 52% 48% 43
Uncommon
Set 60% 40% 41
Rare Set 74% 26% 37
Complete Set 23% 77% 46

Model Analysis - Flaws in game design and
monetization strategy

What stood out to me before analyzing performance:

Strange that common packs give 2 cards while

uncommon gives 3 and rare gives 4
o Would expect rarer packs to contain same # or
fewer cards

18 cards per day seems like a lot of cards,
especially because 900 cards over the event

means lots of duplicates
o Lower numbers of cards in general might give
them more value

Using same rarity names for cards and packs could

cause problems
o Team/config confusion
o Player frustration
] Players could be upset that rare packs gave
them common cards
(] Current game gives guaranteed rarer card
in rarer packs
o Player confusion
[Perhaps have different names for packs
with common/uncommon/rare cards inside
to solve this problem
] Current game uses colors and stars to get
around this issue

Model Analysis - Flaws in game design and
monetization strategy

What stood out after analyzing performance:

Very early in the event, players will be
getting more duplicates than new cards
@ Harms event retention and monetization
potential if players expect mostly duplicates
Rarer sets are being completed at a higher
rate than more common sets
o Rarer cards should have higher perceived
value, and thus, be harder to get
o Playersless likely to play or pay to complete
common sets

Low numbers of players are completing
sets of any rarity, which could cause
dissatisfaction

o Players would expect to at least come close

to completing common sets, and have
smaller chance of completing rarer sets

Recommendations

Recommendations - Outlining Goals

First, | would define the goals of the event

e Sinceit’s abranded event, we might want to drive

social media posts and virality over monetization
o This would impact our target for how many players
we want to complete the set
n Might be fine with almost everyone
completing the set, as early set completion
could drive more social posts versus a
world where few players are ever
completing a set
o Don’'t want to drive negative social media posts for
the IP owners where the event was “too hard”

I’'m not modeling any social impact to KPls
here, so | will opt for tuning to drive
retention and monetization
Goals:
o Rarer sets should be harder to complete
than common sets
o Overall set completion should remain
relatively low

Recommendations - Retuning

e Goal:increase common set completion, e Method:
. o Make rarer packs give fewer cards
decrease rarer set completion m Packs per day
o Boosts retention because they feel e Common:4->3

n Cards/pack

satisfaction in completing common sets
. . ° Uncommon: 3-> 2
o Increases monetization potential because ° Rare:4-> 1
rarer sets are harder to complete o Adjust probabilities for pack types

[] Common: +20%c, -16%u, -4%r
[Uncommon: -20%c, +25%u, -5%r
n Rare: -15%c, -15%u, +30%r
o Increase proportion of rare cards
| Common: 100 -> 50
n Uncommon: 60 -> 30
[] Rare: 25-> 15
o Relevant file:
james_boyle_monopoly_go_retuning.py

Recommendations - Retuning Outcomes

Original Tuning

Average Set

% Finishing % Unfinished |Completion
Set Type Set Set Day
Common Set 52% 48% 43
Uncommon
Set 60% 40% 41
Rare Set 74% 26% 37
Complete Set 23% 77% 46

New Tuning
Average Set
% Finishing % Unfinished | Completion

Set Type Set Set Day
Common Set 96% 4% 32
Uncommon

Set 87% 13% 35
Rare Set 42% 58% 40
Complete Set 35% 65% 43

° Players more likely to complete common sets, far less likely to
complete rare sets
Good for retention and monetization
° Players more like to complete entire set
Making more common sets easier to complete wasn’'t completely
offset by more difficult rare sets (could tune for that)
Higher completion not necessarily bad thing (23% could be
considered low), as it can yield higher satisfaction and retention

o

o

o

Recommendations - Some Other Ideas to Explore

e Stagger card pack release e Guaranteed unique card pack
o Everyone starts earning common packs o Could be item in the shop so players can pay
o Rarerorjust *new”* packs are released in to get missing card to complete their
later event weeks collection
o Thiswould allow for more fewer duplicates o Saleis rate-limited so users can’t just
overall, more generous tuning, and shifting complete their collection on day one, but
player focus which could drive instant still need to login

gratification monetization

